Nanocellulose: From Fundamentals to Advanced Materials PDF by Jin Huang, Alain Dufresne, and Ning Lin

7:38 PM
Nanocellulose: From Fundamentals to Advanced Materials
by Jin Huang, Alain Dufresne, and Ning Lin
Nanocellulose: From Fundamentals to Advanced Materials

Contents
Preface xiii
Acknowledgments xv
1 Introduction to Nanocellulose 1
Jin Huang, Xiaozhou Ma, Guang Yang, and Dufresne Alain
1.1 Introduction 1
1.2 Preparation of Nanocellulose 2
1.2.1 Cellulose Nanocrystals 2
1.2.2 Cellulose Nanofibers 3
1.2.3 Bacterial Nanocellulose 4
1.3 Surface Modification of Nanocellulose 4
1.3.1 Esterification 7
1.3.2 Oxidation 7
1.3.3 Etherification 8
1.3.4 Amidation 8
1.3.5 Other Chemical Methods 8
1.3.6 Physical Interaction 9
1.4 Nanocellulose-Based Materials and Applications 9
1.5 Conclusions and Prospects 13
References 15

2 Structure and Properties of Cellulose Nanocrystals 21
Chunyu Chang, Junjun Hou, Peter R. Chang, and Jin Huang
2.1 Introduction 21
2.2 Extraction of Cellulose Nanocrystals 21
2.2.1 Extraction of Cellulose Nanocrystals by Acid Hydrolysis 21
2.2.2 Pretreatments of Cellulose Before Acid Hydrolysis 27
2.2.3 Other Methods of Preparing Cellulose Nanocrystals 31
2.3 Structures and Properties of Cellulose Nanocrystals 32
2.3.1 Physical Properties of Cellulose Nanocrystals 32
2.3.2 Properties of Cellulose Nanocrystal Suspension 39
References 45

3 Structure and Properties of Cellulose Nanofibrils 53
Pei Huang, ChaoWang, Yong Huang, andMinWu
3.1 Production of CNF 53
3.1.1 Chemical Bleaching 54
3.1.2 Mechanical Disintegration 54
3.1.2.1 Homogenization 54
3.1.2.2 Grinding 58
3.1.2.3 Ball-milling 59
3.1.2.4 Ultrasonication 59
3.1.2.5 Steam Explosion 61
3.1.2.6 Aqueous Counter Collision 61
3.1.2.7 Refining 62
3.1.2.8 Cryocrushing 62
3.1.2.9 Twin-Screw Extrusion 62
3.1.2.10 Other Methods 63
3.1.3 Pretreatment 63
3.2 Features and Properties 64
3.2.1 Morphology of CNF 64
3.2.2 Rheology 64
3.2.3 CNF in Different Forms 65
3.2.3.1 Suspensions 65
3.2.3.2 Powders 66
3.2.3.3 Films 67
3.2.3.4 Hydrogels 70
3.2.3.5 Aerogels CNF 72
3.3 Conclusion 72
References 74

4 Synthesis, Structure, and Properties of Bacterial Cellulose 81
MuhammadWajid Ullah, SehrishManan, Sabella J. Kiprono, Mazhar Ul-Islam,
and Guang Yang
4.1 Introduction 81
4.2 Biogenesis of Bacterial Cellulose 83
4.2.1 Biochemistry of BC Synthesis 83
4.2.2 Biochemical Pathway of BC Production 85
4.2.3 Molecular Regulation of BC Synthesis 87
4.3 Structure and Exciting Features of Bacterial Cellulose 88
4.3.1 Chemical Structure and Properties 89
4.3.2 Physiological Features 89
4.3.3 Self-assembly and Crystallization 90
4.3.4 UltrafineThin Fibrous Structure 90
4.3.5 Macrostructure Control and Orientation 91
4.3.6 Porosity and Materials Absorption Potential of BC for
Composite Synthesis 91
4.3.7 Biocompatibility 92
4.3.8 Biodegradability 92
4.4 Production of Bacterial Cellulose: Synthesis Approaches 93
4.4.1 Static Fermentative Cultivation: Production of BC Membrane,
Film, or Sheet 93
4.4.2 Shaking Fermentative Cultivation: Production of BC Pellets 94
4.4.3 Agitation Fermentative Cultivation: Production of BC Granules 94
4.4.3.1 Rotating Disk Reactor 95
4.4.3.2 Trickling Bed Reactor 95
4.5 Additives to Enhance BC Production 95
4.5.1 Carboxymethylcellulose 97
4.5.2 Organic Acids 97
4.5.3 Vitamin C 97
4.5.4 Sodium Alginate 99
4.5.5 Alcohols 99
4.5.6 SSGO 99
4.5.7 Lignosulfate 100
4.5.8 Agar and Xanthan 100
4.5.9 Thin Stillage 100
4.6 Strategies Toward Low-Cost BC Production 101
4.6.1 Fruit Juices 101
4.6.2 Sugarcane Molasses 101
4.6.3 Agricultural and IndustrialWastes 103
4.6.4 FoodWastes 104
4.7 Conclusions and Future Prospects 105
Acknowledgment 105
References 106
5 Surface Chemistry of Nanocellulose 115
Ge Zhu and Ning Lin
5.1 Brief Introduction to Nanocellulose Family 115
5.1.1 Cellulose Nanocrystals (CNCs) 115
5.1.2 Cellulose Nanofibrils (CNFs) 117
5.1.3 Bacterial Cellulose (BC) 117
5.2 Surface Modification of Nanocellulose 119
5.2.1 Physical Adsorption of Surfactants 119
5.2.2 Sulfonation 121
5.2.3 TEMPO-oxidation 122
5.2.4 Esterification 123
5.2.5 Silylation 125
5.2.6 Grafting Onto 126
5.2.7 Grafting From 131
5.2.7.1 Ring-Opening Polymerization (ROP) 132
5.2.7.2 Living Radical Polymerization (LRP) 134
5.2.8 Chemical Modification from End Hemiacetal 137
5.3 Advanced FunctionalModifications 139
5.3.1 Fluorescent and Dye Molecules 139
5.3.2 Amino Acid and DNA 142
5.3.3 Self-cross-linking of Nanocrystals 144
References 145
6 Current Status of Nanocellulose-Based Nanocomposites 155
Xiaozhou Ma, YuhuanWang, Yang Shen, Jin Huang, and Alain Dufresne
6.1 Introduction 155
6.2 Cellulose Nanocrystal-Filled Nanocomposites 156
6.2.1 Polyolefin-Based Nanocomposites 156
6.2.2 Rubber-Based Nanocomposites 161
6.2.3 Polyester-Based Nanocomposites 164
6.2.4 Polyurethane- andWaterborne Polyurethane-Based
Nanocomposites 167
6.2.5 Epoxy- andWaterborne Epoxy-Based Nanocomposites 169
6.2.6 Natural Polymer-Based Nanocomposites 171
6.3 Fibrillated Cellulose-Filled Nanocomposites 172
6.3.1 Polyolefin-Based Nanocomposites 172
6.3.2 Rubber-Based Nanocomposites 176
6.3.3 Polyester-Based Nanocomposites 178
6.3.4 Polyurethane- andWaterborne Polyurethane-Based
Nanocomposites 180
6.3.5 Natural Polymer-Based Nanocomposites 182
6.3.6 Other Polymer Nanocomposites Filled with Fibrillated Cellulose 184
6.4 Conclusion and Prospect 186
References 186
7 Reinforcing Mechanism of Cellulose Nanocrystals in
Nanocomposites 201
Yaoyao Chen, Lin Gan, Jin Huang, and Alain Dufresne
7.1 Percolation Approach 201
7.1.1 Mean-FieldTheory 202
7.1.2 Percolation Model 204
7.1.3 Factors Influencing the Percolation Network Formation 208
7.2 Interfacial Behaviors Between Cellulose Nanocrystals
and Matrix 211
7.2.1 Effect of Functional Groups on CNC Surface on Interfacial
Interaction 211
7.2.2 Effect of Segmental EntanglementMediated with Grafted Chains on
CNC Surface 225
7.2.3 Role of Co-continuous Structure Derived from Chemical Coupling of
Filler/Matrix 229
7.2.3.1 Thiol−ene Coupling Process BetweenModified Cellulose Nanocrystals
(CNCs) and Matrix 230
7.2.3.2 Huisgen Cycloaddition Click Chemistry Between Modified CNCs
and Matrices 232
7.2.3.3 Schiff’s Base Reaction Between Cellulose Nanocrystals (CNCs)
and Matrix 233
7.2.3.4 Esterification Reaction Between CNCs and The Matrix 237
7.2.3.5 Chemical Coupling Between Hydroxyl Groups of Matrix and
Aldehyded CNCs orModified CNCs 237
7.3 Conclusions 242
References 243
8 Role of Cellulose Nanofibrils in Polymer Nanocomposites 251
Thiago H. S. Maia,Marília Calazans, Vitor Lima, Francys K. V.Moreira,
and Alessandra de Almeida Lucas
8.1 Introduction 251
8.2 Characteristics of Cellulose Nanofibrils 252
8.3 Mechanical Properties of CNF Polymer Nanocomposites 253
8.3.1 Thermoset Resins 254
8.3.2 Thermoplastics 255
8.3.3 Waterborne Polymer Systems 257
8.4 Effects of Extrusion on Mechanical Properties of PE/CNF
Nanocomposites 258
8.5 Effect of Fiber Size and Lignin Presence 264
8.6 Multifunctionality: Optical and Barrier Properties of CNF
Nanocomposites 267
8.7 Outlooks in CNF Nanocomposites 269
References 269
9 AdvancedMaterials Based on Self-assembly of
Cellulose Nanocrystals 277
Lin Gan, Siyuan Liu, Dong Li, and Jin Huang
9.1 Self-assembly Structure of CNCs 277
9.1.1 Structure of CNC Liquid Crystals 278
9.1.2 Components of CNC Self-assembly 279
9.1.3 Form of CNC Self-assembly Products 279
9.2 Self-assembly Methods and Materials 281
9.2.1 Casting Method and Spin Coating Method 281
9.2.2 Vacuum-Assisted Self-assembly 283
9.2.3 Evaporation-Induced Self-assembly 284
9.3 Structural Adjustment of CNC Self-assembly 284
9.3.1 Cholesteric Structure of Neat CNC Films 284
9.3.2 Cholesteric Structure and Cross-linking Structure in Gel 286
9.3.3 Cholesteric Structure in Bulk Materials of CNC Composite
Self-assembly 288
9.3.4 Nematic Structure 290
9.4 Modifying Surface Chemical Structure of CNC 291
9.5 Properties of CNC Self-assembly 295
9.5.1 Mechanical Properties 295
9.5.1.1 Mechanical Properties of CNC Films 295
9.5.1.2 Mechanical Properties of CNC Composite Films 295
9.5.2 Iridescent Color 298
9.5.2.1 Iridescent Color Control of CNC Films 298
9.5.2.2 Iridescent Color Control of CNC Composite Materials 300
9.5.2.3 Optical Control of CNC Self-assembly Gels 302
9.5.3 Plasmonic Properties of CNC 304
9.6 Potential Applications 305
9.6.1 Oil/Water Separation 305
9.6.2 Application of Optical Materials 306
9.6.2.1 Optical Application of CNC Films 306
9.6.2.2 Optical Application of CNC Composite Films 306
9.6.3 Sensors 307
References 309
10 Potential Application Based on Colloidal Properties of
Cellulose Nanocrystals 315
Shiyu Fu and Linxin Zhong
10.1 Colloidal Properties of CNC and Applications in
Functional Materials 315
10.2 Nanocellulose for Paper and Packaging 324
10.2.1 Nanocellulose for Paper Coating 326
10.2.2 Microfibrillated Cellulose Coated Paper for Delivery System 328
10.2.3 Water-Resistant Nanopaper Based on Modified Nanocellulose 329
10.2.4 Effect of Chemical Composition on Microfibrillar Cellulose Film 334
10.2.5 Antimicrobial Diffusion Films Based on Microfibrillated
Cellulose 336
10.3 Nanocellulose forWood Coatings 339
References 341
11 Strategies to Explore Biomedical Application of
Nanocellulose 349
Yanjie Zhang, Peter R. Chang, XiaozhouMa, Ning Lin, and Jin Huang
11.1 Introduction 349
11.2 Research on Biological Toxicity of Nanocellulose 349
11.3 Application of Nanocellulose for Immobilization and Recognition of
Biological Macromolecules 355
11.4 Application of Nanocellulose for Cell Imaging 360
11.5 Application of Nanocellulose for Cell Scaffolds 361
11.6 Application of Nanocellulose in Tissue Engineering 366
11.6.1 Tissue Repairing, Regeneration, and Healing 366
11.6.1.1 Skin Tissue Repairing 368
11.6.1.2 Bone Tissue Regeneration 370
11.6.2 Tissue Replacement 371
11.6.2.1 Artificial Blood Vessels 371
11.6.2.2 Soft Tissues, Meniscus, and Cartilage 373
11.6.2.3 Nucleus Pulposus Replacement 375
11.7 Application of Nanocellulose in Drug Carrier and Delivery 375
11.8 Application of Nanocellulose as Biomedical Materials 382
11.8.1 Antimicrobial Nanomaterials 382
11.8.1.1 Nanocellulose Incorporated with Inorganic Antimicrobial
Agents 385
11.8.1.2 Nanocellulose Incorporated with Organic Antimicrobial Agents 386
11.8.2 Medical Composite Material 388
11.9 Summary 389
References 389
12 Application of Nanocellulose in Energy Materials and
Devices 397
Gang Chen and Zhiqiang Fang
12.1 Introduction 397
12.2 Nanocellulose for Lithium Ion Batteries (LIBs) 398
12.2.1 Nanocellulose-Based Electrodes 398
12.2.2 Nanocellulose-Based Separators 401
12.2.3 Nanocellulose-Based Electrolytes 403
12.2.4 Nanocellulose-Based Binders 403
12.3 Nanocellulose for Supercapacitors 404
12.3.1 Nanocellulose As a Substrate 405
12.3.2 Nanocellulose As a Nano-template 406
12.3.3 Nanocellulose As a Mesoporous Membrane 410
12.4 Nanocellulose for Other Energy Devices 411
12.4.1 Fuel Cells 411
12.4.2 Solar Cells 412
12.4.3 Nanogenerators 414
12.5 Conclusion and Outlook 415
References 416

13 Exploration of Other High-Value Applications of
Nanocellulose 423
Ruitao Cha, Xiaonan Hao, Kaiwen Mou, Keying Long, Juanjuan Li,
and Xingyu Jiang
13.1 Fire Resistant Materials 423
13.1.1 Introduction 423
13.1.2 Flame Retardant Additives 424
13.1.2.1 Halogenated Flame Retardants 424
13.1.2.2 Phosphorus-Based Flame Retardants 424
13.1.2.3 Nitrogen-Based Flame Retardants 424
13.1.2.4 Silicon-Based Flame Retardants 424
13.1.2.5 Mineral Flame Retardants 425
13.1.2.6 Nanoparticles 425
13.1.3 Fire Resistance of Clay Nanopaper Based on Nanocellulose 425
13.1.4 Conclusion 432
13.2 Thermal Insulation Materials 432
13.2.1 Introduction 432
13.2.2 Thermal Building Insulation Materials 432
13.2.2.1 MineralWool 433
13.2.2.2 Expanded Polystyrene (EPS) 433
13.2.2.3 Polyurethane (PUR) 433
13.2.2.4 Aerogel 433
13.2.3 Thermal Insulation Performance of Nanocellulose-Based
Materials 434
13.2.4 Conclusion 437
13.3 The Templated Materials 438
13.3.1 Introduction 438
13.3.2 Synthesis of Magnetic Composite Aerogels 442
13.3.3 Synthesis of Inorganic Hollow Nanotube Aerogels 454
13.3.4 The Self-assembled CNC Templates 458
13.3.5 Conclusion 464
References 464
Index 475

It is US$10. To get this book send email: textileebooks@gmail.com

Share This

Related Posts

Previous
Next Post »