Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques PDF Edited by Mohd Shabbir, Shakeel Ahmed and Javed N. Sheikh

By

Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques
Edited by Mohd Shabbir, Shakeel Ahmed and Javed N. Sheikh

Frontiers of Textile Materials

Contents
Preface xv
1 Introduction to Textiles and Finishing Materials 1
Mohd Shabbir and Javed N. Sheikh
1.1 Introduction 1
1.2 Polymers 2
1.3 Nanomaterials 3
1.4 Enzymes 4
1.5 Plasma and Radiations for Textiles 6
1.6 Flexible Electronics 7
References 8
2 Polymers for Textile Production 13
Mohammad Tajul Islam, Md. Mostafizur Rahman
and Nur-Us-Shafa Mazumder
2.1 Polymers 13
2.2 History of Polymer 15
2.3 Classification of Polymers 16
2.4 Polymerization 19
2.4.1 Chain Polymerization 19
2.4.2 Step Polymerization 21
2.5 Polymers in Textile Fibers 23
2.5.1 Natural Polymers 24
2.5.1.1 Cellulose 24
2.5.1.2 Cotton 25
2.5.1.3 Jute 26
2.5.1.4 Keratin 26
2.5.1.5 Wool 27
2.5.1.6 Fibroin 28
2.5.1.7 Silk 28
2.5.2 Synthetic Polymers 29
2.5.2.1 Polyethylene 29
2.5.2.2 Polypropylene 33
2.5.2.3 Polytetrafluoroethylene 36
2.5.2.4 Poly Vinyl Chloride 38
2.5.2.5 Poly Vinylidene Chloride 40
2.5.2.6 Polyamide 41
2.5.2.7 Polyethylene Terephthalate 47
2.5.2.8 Polyacrylonitrile 50
2.5.2.9 Modacrylic Fiber 52
2.5.2.10 Spandex Fiber 52
2.6 Polymers in Textile Processing 54
2.6.1 Polyvinyl Alcohol 54
2.6.2 Starch 56
2.6.3 Sodium Alginate 56
2.7 Conclusion 57
References 57


3 Advances in Polymer Coating for Functional Finishing
of Textiles 61
Asma Bouasria, Ayoub Nadi, Aicha Boukhriss,
Hassan Hannache, Omar Cherkaoui and Said Gmouh
3.1 Introduction 62
3.2 Polymer Coating Methods 63
3.2.1 Dip Coating 63
3.2.2 Transfer Coating 64
3.2.3 Kiss Roll Coating 64
3.2.4 Gravure Roll Coating 64
3.2.5 Slot Die or Extrusion Coating 65
3.2.6 Powder Coating 65
3.2.7 Knife Coating 66
3.2.7.1 Choice of the Thickness 67
3.2.7.2 The Viscosity 67
3.2.7.3 Drying 67
3.2.7.4 Type of Knife 68
3.2.7.5 Knife Use Technologies 69
3.2.7.6 Type of Knife Coating 70
3.3 New Technologies in Polymer Coatings 71
3.3.1 Plasma Treatment Technology 71
3.3.2 Electrofluidodynamic Treatment Technology 72
3.3.3 Supercritical Carbon Dioxide-Based
Method Technology 73
3.4 Coating Materials 73
3.4.1 Polyvinylchloride (PVC) 74
3.4.2 Polyacrylics (PA) 74
3.4.3 Polyurethane (PU) 75
3.5 New Functionalities of Polymer Coatings 77
3.5.1 Application in Smart Textile 77
3.5.2 Flame Retardant 77
3.5.3 Water Repellence 79
3.5.4 Antibacterial Function 81
3.6 Conclusions and Future Outlook 82
References 82
4 Functional Finishing of Textiles with β-Cyclodextrin 87
Aminoddin Haji
4.1 Introduction 87
4.2 Properties of Cyclodextrins 89
4.3 Chemical Modification of Cyclodextrins 91
4.4 Methods for Attachment of β-CD on Textiles 91
4.5 Functional Properties Obtained by Attachment
of β-CD on Textiles 100
4.5.1 Antimicrobial Activity and Drug Delivery 100
4.5.2 Fragrance Release and Anti-Odor Finishing 101
4.5.3 Improved Dyeing and Printing 105
4.5.4 Wastewater Treatment 105
4.5.5 Flame Retardant Finishing 105
4.6 Conclusion 109
References 109
5 Synthesis of Nanomaterials and Their Applications
in Textile Industry 117
Rizwan Arif , Sapana Jadoun and Anurakshee Verma
5.1 Introduction 118
5.2 Synthesis of Nanomaterials 119
5.2.1 Preparation of Chitosan Nano-Fibers 119
5.2.2 Preparation of Polyethylene Glycol Capped Silver
Nanoparticles (AgNPs) 120
5.2.3 Preparation of Silk Textile Nano-Composite
Materials of TiO2 Nanoparticles 122
5.3 Synthesis of Nano-Fiber-Based Hydrogels (NFHGs) 122
5.3.1 Electrospinning 123
5.3.2 Weaving 123
5.3.3 Freeze Drying 124
5.3.4 3D Printing 124
5.4 Application of Nano Textiles 124
5.5 Conclusion 130
References 131
6 Modification of Textiles via Nanomaterials
and Their Applications 135
Sapana Jadoun, Anurakshee Verma and Rizwan Arif
6.1 Introduction 136
6.2 Nanotextiles and Its Properties 137
6.3 Modification of Textiles via Nanoparticles 138
6.3.1 Modification via Silver Nanoparticle 139
6.3.2 Modification via Zinc Oxide Nanoparticle 143
6.3.3 Modification via Titanium Dioxide Nanoparticle 144
6.3.4 Modification via Magnesium Oxide (MgO)
Nanoparticles 144
6.3.5 Modification via Polymer Nanoparticles 146
6.4 Applications 146
6.5 Conclusion 147
References 148
7 UV Protection via Nanomaterials 153
Kunal Singha, Subhankar Maity and Pintu Pandit
7.1 Introduction 154
7.1.1 Different Types of Nano-Finishing
on Textile Materials 154
7.1.1.1 UV Protection 154
7.1.1.2 Nano-Silver (Ag) (Antimicrobial Activity) 155
7.1.1.3 Water Repellence Finishing 155
7.1.1.4 Self-Cleaning or “Lotus Effect” 155
7.1.1.5 New-Age Nano-Finishing on
Textile Materials Nano-Care 156
7.2 Zinc Oxide Particle (ZnO) Physical Properties 156
7.2.1 Chemical Properties 156
7.2.2 Nanophase ZnO 157
7.2.3 TiO2 Structure and Properties 157
7.2.3.1 TiO2 Nanoparticle 157
7.3 UV Protective Applications 157
7.3.1 Nanocoating of ZnO–TiO2 on Textile Fabric 158
7.3.2 Polymer Dispersion Methods of Nanocoating 158
7.4 Applications as UV Absorber and Sunscreen 159
7.4.1 Nanomaterials Used in UV Protective Finishing 159
7.5 Nano-ZnO-TiO2 Finishing 161
7.5.1 Mechanism of UV Protection 162
7.5.2 UV Protection Through Nano-Finishing of Textiles 162
7.6 Evaluation of UV Protection Finishes 163
7.7 Conclusions 164
References 165
8 Synthesis, Characterization, and Application
of Modified Textile Nanomaterials 167
Anurakshee Verma, Rizwan Arif and Sapana Jadoun
8.1 Introduction of Textile Nanomaterials 167
8.2 Synthesis of Textiles Nanomaterials 168
8.2.1 Synthesis via Hydrothermal Method 169
8.2.2 Synthesis via Solvo-Thermal Method 169
8.2.3 Synthesis via Chemical Vapor Deposition
(CVD) Method 169
8.2.4 Synthesis via Physical Vapor Deposition
(PVD) Method 170
8.2.5 Synthesis via Template Method 170
8.2.6 Synthesis via Conventional Sol–Gel Method 170
8.2.7 Synthesis via Microwave Method 170
8.2.8 Synthesis via Fabrication Process 170
8.3 Characterization 171
8.3.1 Microscopic Characterization of Textile
Nanomaterials 172
8.3.1.1 Transmission Electron Microscopy (TEM) 172
8.3.1.2 Atomic Force Microscope (AFM) 172
8.3.1.3 Scanning Electron Microscopy (SEM) 173
8.3.1.4 Scanning Tunneling Microscopy (STM) 174
8.3.2 Spectroscopic Characterization of Textile
Nanomaterials 175
8.3.2.1 Ultraviolet-Visible (UV-VIS) Spectroscopy 175
8.3.2.2 Raman Spectroscopy 175
8.3.2.3 Infrared Spectroscopy (IR) 175
8.3.3 Characterization of Textile Nanomaterials
by X-Ray 176
8.3.3.1 Energy Dispersive X-Ray Analysis (EDX) 176
8.3.3.2 Wide Angle X-Ray Diffraction 176
8.3.3.3 X-Ray Photoelectron Spectroscopy (XPS) 176
8.3.3.4 Particle Size Analyzer 177
8.3.4 Characterization of Textile Nanomaterial
by Some Other Technique 178
8.3.4.1 Physical Testing 178
8.3.4.2 Determination of Recovery Angle
and Tensile Properties 178
8.3.4.3 Determination of Absorbency by
Wicking Test and Bending Length 179
8.3.4.4 Evaluation of Water and Air Permeability 179
8.4 Application of Textiles Nanomaterials 179
8.4.1 Application Based on Properties of Textile Material 179
8.4.1.1 Anti-Bacterial Properties of Textile
Nanomaterial 179
8.4.1.2 UV Protective Properties of Textile
Nanomaterial 180
8.4.1.3 Water Repellence Properties of Textile
Nanomaterial 180
8.4.1.4 Anti-Static Properties of Textile
Nanomaterial 180
8.4.1.5 Flame Retardant Properties of Textile
Nanomaterial 180
8.4.1.6 Wrinkle-Free Properties of Textile
Nanomaterial 181
8.4.1.7 Self-Cleaning Properties of Textile
Nanomaterial 181
8.4.1.8 Economical and Environmental
Aspects of Textile Nanomaterial 181
8.4.2 Application in Textile Industry 182
8.4.2.1 Textile Nanomaterial Used
in Swimming Costume 182
8.4.2.2 Textile Nanomaterial Used in Sports
Goods 182
8.4.2.3 Textile Nanomaterial Used Inflexible
Electronic Circuit 182
8.4.2.4 Textile Nanomaterial Used in Lifestyle 182
8.5 Current Trends and Future Prospects 183
8.6 Conclusion 183
References 184
9 Biomaterials-Based Nanogenerator: Futuristic Solution
for Integration Into Smart Textiles 189
S. Wazed Ali, Satyaranjan Bairagi and Pramod Shankar
9.1 Introduction 190
9.2 Biomaterial-Based Piezoelectric Nanogenerator 191
9.2.1 Cellulose-Based 191
9.2.2 Collagen-Based 194
9.2.3 Protein-Based 197
9.3 Conclusion 198
Acknowledgment 199
References 199
10 Textiles in Solar Cell Applications 203
Khursheed Ahmad
10.1 Introduction 203
10.2 Basic Principle and Types of Solar Cells 205
10.3 Textiles in Solar Cells 206
10.3.1 Textiles in Perovskite Solar Cells 206
10.3.2 Textiles in Dye Sensitized Solar Cells 210
10.4 Conclusion 212
References 213
11 Multifunctionalizations of Textile Materials Highlighted
by Unconventional Dyeing 219
Vasilica Popescu
11.1 Introduction 220
11.2 Functionalization of Textile Materials:
Functionalization Techniques 220
11.3 PAN: Functionalization/Multifunctionalization
by Chemical Treatments 223
11.3.1 Dyeing of Functionalized Acrylic Fibers with
Different Reagents 229
11.3.2 Functionalization of PAN-M with
Basic Reagents 230
11.3.3 Dyeing of PAN-M Functionalized with
Basic Reagents 238
11.4 Multi-Functionalization of Acrylic Fiber by Grafting
with Polyfunctional Agents 244
11.4.1 Multifunctionalization of PAN Fiber with
Chitosan 244
11.4.1.1 Multifunctionalization of PAN-M
Fiber with Chitosan by Means
of Electrostatical Bonding 245
11.4.1.2 Multifunctionalization PAN-M
Fiber with Chitosan via
Covalent Bonds 247
11.4.1.3 Multifunction of PAN Fiber
with MCT-β-CD 248
11.5 Polyethylene Terephthalate: Functionalization Ways 249
11.5.1 Functionalization of PET with Basic Reagents 250
11.5.1.1 Dyeing of PET Functionalized
with Agents Having Basic Character 253
11.5.2 PET Functionalization with Alcohols 255
11.5.2.1 Multifunctionalized PET Dyeing
with Alcohols 257
11.5.3 PET-Multifunctionalization with MCT-β-CD 260
11.5.4 Functionalization of the PET Surface with Plasma
Treatment 261
11.5.4.1 Dyeing of PET Functionalized by
Means of Plasma and Grafting with
Polyfunctional Compounds 264
11.6 Cotton: Multifunctionalization Ways 266
11.6.1 Surface Activation with Plasma Followed by
Grafting with Polyfunctional Compounds 267
11.6.1.1 Dyeing of Multifunctionalized Cotton
by Plasma and Grafting Treatments 269
11.6.2 Alkyl Chitosan Grafting on Cotton 269
11.6.2.1 Dyeing of Cotton Grafted
with Alkyl Chitosans 273
11.6.3 Multifunctionalization of Cotton with
Polyfunctional Compounds and
Unconventional Dyeing 275
11.6.3.1 Functionalization of Cotton
with Tetronic 701 and Chitosan 275
11.6.3.2 Functionalization of Cotton with a
Tetrol (Tetronic 701) and MCT-β-CD 277
11.6.3.3 Successive Functionalization of Cotton
with a Tetrol (Tetronic 701), Chitosan,
and MCT-β-CD 277
11.6.4 Multifunctionalization of Cotton with Carbonyl
Compounds and MCT-β-CD 278
11.7 Conclusions 279
References 280
12 Advanced Dyeing or Functional Finishing 291
Kunal Singha, Subhankar Maity and Pintu Pandit
12.1 Introduction 292
12.2 Mechanism of Dyeing by Phase Separation 293
12.3 Advanced Dyeing and Finishing Techniques 293
12.3.1 Ultrasound Technology 293
12.3.2 Ultraviolet (UV) Technology 294
12.3.3 Ozone Technology 294
12.3.4 Plasma Technology/Ion Implantation Technology 295
12.3.5 Gamma Radiation Technology 295
12.3.6 Laser Technology 296
12.3.7 Microwave Technology 296
12.3.8 E-Beam Radiation Technology/
Mass-Analyzed Ion Implantation 296
12.3.9 Supercritical Carbon Dioxide (Sc. CO2) Technology 296
12.4 Applications of Ultrasonics in Textiles 297
12.4.1 Principle of Ultrasound Dyeing Technique 298
12.4.2 Basic Design of the Ultrasound Dyeing
Instrument Developed by SASMIRA, India 299
12.4.3 Different Section of the Machine 299
12.4.4 K/S Value 300
12.4.5 Dye Uptake 301
12.4.6 Comparison of Ultrasound Dyeing Technique
with the Conventional Dyeing Technique
for Various Textile Materials 301
12.4.7 Dyeing of Polyester by Disperse Dye 303
12.5 Conclusions 304
References 305
13 Plasma and Other Irradiation Technologies Application
in Textile 309
Kartick K. Samanta, S. Basak and Pintu Pandit
13.1 Introduction 310
13.2 Plasma Treatment of Textile 312
13.3 Optical Properties of Plasma 314
13.4 Improvement in Hydrophobic Attribute 316
13.4.1 Surface Chemistry of Hydrophobic Textile 317
13.5 Improvement in Liquid Absorbency and Coloration 320
13.6 Plasma Treatment of Protein Fiber 322
13.6.1 On Silk Fiber 322
13.6.2 On Wool Fabric 324
13.7 UV Irradiation 325
13.8 Laser Irradiation 326
13.9 Electron Beam Irradiation 327
13.10 Summary 327
References 328


14 Bio-Mordants in Conjunction With Sustainable Radiation
Tools for Modification of Dyeing of Natural Fibers 335
Shahid Adeel, Shumaila Kiran, Tanvir Ahmad,
Noman Habib, Kinza Tariq and Muhammad Hussaan
14.1 Natural Dyes 336
14.2 Health and Environmental Aspects 336
14.3 Isolation Process 336
14.3.1 Conventional Methods 337
14.3.2 Modern Methods 337
14.4 Role of US and MW in Isolation 337
14.5 Fabric Chemistry 338
14.6 Shade Development Process 338
14.6.1 Chemical Mordant 339
14.6.2 Bio-Mordant 339
14.7 Arjun 340
14.8 Neem 340
14.9 Coconut 340
14.10 Harmal 340
14.11 Recent Advances 341
Acknowledgments 344
References 344
Index 349
This book is US$10
To get free sample pages OR Buy this book
Send email: [email protected]


Share this Book!

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.