Handbook of Fibrous Materials, Volume 1, 2 PDF by Jinlian Hu, Bipin Kumar and Jing Lu

9:37 AM
Handbook of Fibrous Materials, 2 Volumes: Volume 1: Production and Characterization / Volume 2: Applications in Energy, Environmental Science and Healthcare
Edited by Jinlian Hu, Bipin Kumar and Jing Lu
Handbook of Fibrous Materials, 2 Volumes: Volume 1: Production and Characterization / Volume 2: Applications in Energy, Environmental Science and Healthcare
Contents 
 
Volume 1
Preface xix
1 Fundamentals of the Fibrous Materials 1
Jinlian Hu, Md A. Jahid, Narayana Harish Kumar, and Venkatesan Harun
1.1 Introduction 1
1.1.1 What Are Fibrous Materials? 1
1.2 Historical Evolution of Fibers 2
1.3 Classification of Fibrous Materials 2
1.4 Fundamental Characteristics of Fibrous Materials 6
1.5 Morphological and Structural Properties of Fibrous Materials 7
1.5.1 Plant or Natural Cellulosic Fibers 7
1.5.2 Animal or Protein Fibers 7
1.5.3 Regenerated Cellulosic Fibers 10
1.5.4 Synthetic or Manufactured (Textile and Non-textile) Fibers 10
1.6 Essential or Fundamental Properties of Fibrous Materials 10
1.6.1 Physical Properties 10
1.6.1.1 Mechanical Behavior of Fibrous Assemblies 11
1.6.2 Chemical Properties 14
1.6.3 Biological Properties 14
1.6.4 Thermal Properties 14
1.6.5 Other Desirable Properties 15
1.7 Textile Processing 15
1.7.1 Spinning 15
1.7.1.1 Ring Spinning 16
1.7.1.2 Rotor Spinning 17
1.7.1.3 Friction Spinning 17
1.7.1.4 Yarn Numbering System (Count) 17
1.7.2 Fabric Manufacturing 18
1.7.2.1 Weaving Process 18
1.7.2.2 Knitting 19
1.7.2.3 Nonwoven 19
1.7.3 Wet Processing Technology 20
1.7.3.1 Pretreatment Process 20
1.7.3.2 Dyeing 20
1.7.3.3 Dyeing Methods 20
1.7.3.4 Dyes 20
1.7.3.5 Finishing 21
1.7.3.6 Printing 21
1.8 Textile Applications 21
1.8.1 Advanced Applications of Textile Material 21
1.8.2 Functional Textile 22
1.8.2.1 Water Repellent 22
1.8.2.2 Water Vapor Permeability 23
1.8.3 Applications of High-Performance Fibrous Materials 24
1.8.3.1 Fibers for Automobile Composite 24
1.8.3.2 Fibers as Building Materials 25
1.8.3.3 Fibers for Auxetic Applications 25
1.8.3.4 Fibers for Environmental Protection:Water Purification/Filtration 25
1.8.3.5 Fibers for Optical Applications 26
1.8.4 Application of Sensors/Actuators 26
1.8.4.1 Fibers as Electronic Devices/Wearable Electronics/Energy
Materials/Sensors and Actuators 26
1.8.4.2 Fibers for Medical Compression 27
1.8.4.3 Fibers for Health/Stress/Comfort Management 27
1.8.4.4 Fibers for Thermal Protection 28
1.8.4.5 Fibers for Radiation Protection 28
1.8.5 Applications of Integrated Products 29
1.8.5.1 Fibers for Tissue Engineering 29
1.8.6 Sensitive and Smart Materials 30
1.8.6.1 Fibers with Conductive Properties as IndustrialMaterials 30
1.8.6.2 Memory Fibrous Materials 30
1.8.7 Advantages of Fibrous Materials 30
References 31
2 Animal Fibers:Wool 37
Xiao Xueliang
2.1 Introduction 37
2.2 Classification ofWools 41
2.2.1 Classification ofWool in Fineness 41
2.2.2 Classification ofWool in Terms of Fiber Structure 41
2.2.3 Classification ofWool in Terms of Fiber Type on Sheep Hair Layer 44
2.2.4 Classification ofWool in Terms of Hair Picking Method and Original
Hair Shape 44
2.2.5 Classification ofWool in Terms ofWool Cut Season 45
2.3 Processing ofWool Fibers and Yarns 45
2.3.1 Primary Processing ofWool 45
2.3.2 Yarn Spinning Process ofWool 46
2.4 Chemical Compositions and Structural Characteristics ofWool 48
2.4.1 Compositions ofWool 48
2.4.2 Macromolecular Structure ofWool 49
2.4.3 Morphology and Hierarchical Structure ofWool Fiber 50
2.5 Properties ofWool 52
2.5.1 Fineness ofWool 52
2.5.2 Length ofWool Fiber 53
2.5.3 Crimpness ofWool 55
2.5.4 Friction and Felting Properties ofWool 56
2.5.5 Wool Grease and Impurities 57
2.5.6 Other Properties ofWool Fibers 59
2.6 Quality Inspection and Evaluation ofWools 60
2.6.1 RawWools from Sheep 60
2.6.2 FineWool from China’s Raw and Improved Sheep Breed 60
2.6.3 Tops of Domestic FineWool and Its ImprovedWool 60
2.6.4 Inspection and Evaluation of AustraliaWool 61
2.6.5 Inspection and Evaluation ofWool Fabric 61
2.7 Shape Memory Properties ofWool 63
2.8 Future Trends of Application ofWool Keratin 70
2.8.1 Extraction of Keratin fromWool for New Product Development 70
2.8.2 Industrial Trends Relating to Sustainable Polymers 71
2.8.3 Future Trends 71
2.8.4 Sources of Further Information and Advice 72
References 72
3 Animal Fibers: Silk 75
K. Murugesh Babu
3.1 Introduction to Silk and Silk Industry 75
3.2 Types of Silk andTheir Importance 78
3.2.1 Mulberry 78
3.2.1.1 Types of Mulberry Silk 79
3.2.2 Non-mulberry 80
3.2.2.1 Tasar 80
3.2.2.2 Oak Tasar 81
3.2.2.3 Eri 81
3.2.2.4 Muga 82
3.2.2.5 Anaphe Silk 82
3.2.2.6 Fagara Silk 83
3.2.2.7 Coan Silk 83
3.2.2.8 Mussel Silk 83
3.2.2.9 Spider Silk 83
3.2.3 Fine Structure of Silk 83
3.2.3.1 Longitudinal View 84
3.2.3.2 Cross-Sectional View 84
3.2.4 Amino Acid Composition 85
3.2.5 Properties of Silk Fibers 86
3.2.5.1 Tensile Properties 86
3.2.5.2 Optical Properties 87
3.2.5.3 Viscoelastic Behavior 88
3.2.6 Applications 88
3.2.6.1 Textile and Apparels 89
3.2.6.2 Biomedical Field 90
3.2.6.3 Fiber-Reinforced Composites 90
3.3 Future Trends 91
3.4 Summary 92
References 92
4 Cellulose Fibers 95
Feng Jiang
4.1 Introduction 95
4.2 Structure and Biosynthesis of Cellulose 95
4.3 Nanoscaled Cellulose Fibers 100
4.4 Submicron-Scaled Cellulose Fibers 107
4.5 Macroscaled Cellulose Fibers 114
4.6 Applications of Cellulose Fibers 118
4.7 Conclusion and Perspectives 119
References 119
5 Chitosan Fibers 125
Seema Sakkara,Mysore Sridhar Santosh, and Narendra Reddy
5.1 Introduction 125
5.2 Extraction/Modification of Chitosan 127
5.3 Fibers from Chitosan 131
5.3.1 Production of Pure Chitosan Fibers 131
5.3.2 Chitosan Blend Fibers 135
5.3.3 Generating Hollow Chitosan Fibers 139
5.3.4 Microfluidic Method of Producing Chitosan Fibers 140
5.3.5 Application of Chitosan Fibers 140
5.4 Electrospun Chitosan Fibers 145
5.5 Regenerated Chitosan Fibers 151
5.6 Conclusions 151
Acknowledgments 152
References 152
6 Collagen Fibers 157
Jinlian Hu and Yanting Han
6.1 Introduction 157
6.2 Source and Structure of CF 157
6.3 Isolation of Natural CF 160
6.4 Spinning of CF 160
6.4.1 Extraction of Collagen 160
6.4.2 Electrospinning of CF 162
6.4.3 Wet Spinning of CF 162
6.4.4 Microfluidic Spinning of CF 164
6.4.5 Collagen Composite Fiber 165
6.5 Application of CF 165
6.6 Perspectives 171
7 Electrospun Fibers for Filtration 175
Xia Yin, Jianyong Yu, and Bin Ding
7.1 Introduction 175
7.2 Fabrication Technologies 176
7.2.1 Electrospinning 176
7.2.2 Electro-netting 177
7.3 Principles and Theories 178
7.3.1 Fundamental Theory of Electrospinning 178
7.3.2 FormationMechanism of the Nanofiber/Net (NF/N)Membranes 180
7.4 Structure and Properties 181
7.4.1 Types and Structures of the Nanofiber Membranes 181
7.4.2 Structures and Species of the Nanofiber/Net (NF/N)Membranes 183
7.5 Application of Nanofibrous Membranes in Air Filtration 185
7.5.1 Normal Temperature Filter 185
7.5.1.1 Electrospun Nanofiber Membranes 185
7.5.1.2 Electrospun Nanofiber/Net (NF/N) Membranes 191
7.5.2 Medium-High Temperature Filter 196
7.6 Future Trends 199
References 199
8 Aramid Fibers 207
Manjeet Jassal, Ashwini K. Agrawal, Deepika Gupta, and Kamlesh Panwar
8.1 Introduction 207
8.2 Preparation of Aromatic Polyamides 207
8.2.1 Low Temperature Polycondensation 208
8.2.2 Direct Polymerization in Solution Using Phosphites 210
8.2.3 Copolyaramids 210
8.3 Aramid Solutions 211
8.4 Spinning of Aramid Fibers 214
8.4.1 Dry Spinning 214
8.4.2 Wet Spinning 214
8.4.3 Dry-Jet-Wet Spinning 215
8.4.4 Aramid Nanofibers 216
8.4.5 Fiber Heat Treatment 216
8.5 Influence of Structure on Properties 217
8.5.1 Fiber Structure 217
8.5.2 Fiber Properties 219
8.5.2.1 Chemical Properties 219
8.5.2.2 Mechanical Properties 220
8.5.2.3 Thermal Properties 221
8.6 Applications 222
8.6.1 Composites with Soft Materials 222
8.6.2 Advanced Composites 224
8.6.3 Ultrafiltration and Hemodialysis 224
8.6.4 Ropes and Cables 224
8.6.5 Industrial Protective Apparel 225
8.6.6 Ballistics 225
8.6.7 Permselective Use 225
8.6.8 Electrical Application 226
8.6.9 Communication 226
8.7 Future Trends 227
References 227
9 Conductive Fibers 233
Tung Pham and Thomas Bechtold
9.1 Introduction 233
9.2 Production of Conductive Fibers: Principles and Technologies 233
9.2.1 Conductivity 233
9.2.2 Metal Fibers: Coating and Deposition 234
9.2.3 Intrinsically Conductive Polymers and Coating 239
9.2.4 Carbon-Based Fibers (Carbon Black, Carbon Nanotubes,
Graphene) 242
9.2.5 Combination of Different Techniques 243
9.3 Integration of Conductivity into Textile Structures 244
9.3.1 Fiber Material Selection/Yarn Production 245
9.3.2 Fabric Production 248
9.3.3 Embroidery/Sewing 248
9.3.4 Printing 249
9.4 Applications/Examples 250
9.4.1 Material Selection 250
9.4.2 Washable Sensors (Example: Moisture Bed Sensor) 251
9.4.3 Textile Electrodes 252
9.4.4 Flexible Devices 253
9.4.5 Wearable Electronics 253
9.4.6 Summary and Future Trends 253
References 254
10 Phase Change Fibers 263
SubrataMondal
10.1 Introduction 263
10.2 Phase Change Materials (PCMs) 264
10.2.1 Principle of Phase Change Materials 264
10.2.2 Various Types of Phase Change Materials 265
10.2.2.1 Organic PCMs 266
10.2.2.2 Inorganic PCMs 266
10.2.2.3 Eutectic PCMs 267
10.3 Phase Change Fibers 267
10.3.1 How PCMWorks with Fibrous Structures 267
10.3.2 Microencapsulation of PCMs 268
10.3.3 Techniques to Prepare Phase Change Fibrous Structures 270
10.3.3.1 Coating of Encapsulated PCM on Fibrous Structure 270
10.3.3.2 PCM Incorporated Fibrous Structure by Conventional Spinning 271
10.3.3.3 Phase Change Fibers by Electrospinning 272
10.4 Phase Change Fibers for Advanced Material Applications 274
10.4.1 Phase Change Fibers for Advanced Textile Applications 274
10.4.1.1 Sportswear 274
10.4.1.2 Hospital Applications 274
10.4.1.3 Beddings and Accessories 275
10.4.1.4 Other Applications in Advanced Textiles 275
10.4.2 Automotive Industries 275
10.4.3 Electrical Applications 275
10.4.4 Other Applications 276
10.5 Summary 276
References 276
11 Bicomponent Fibers 281
Rudolf Hufenus, Yurong Yan, Martin Dauner, Donggang Yao, and Takeshi
Kikutani
11.1 Introduction 281
11.2 Bicomponent Fiber Spinning Technologies 282
11.2.1 Spin Pack Design 282
11.2.2 Cross-Sectional Geometries 284
11.2.3 Melt Spinning Equipment 285
11.2.4 Special Spin Pack Designs 286
11.3 Principles and Theories of Bicomponent Spinning 288
11.3.1 Structure Formation During Spinning and Drawing 288
11.3.2 Mutual Influence of Components on Orientation and
Crystallinity 288
11.3.3 Interfacial Adhesion 290
11.3.4 Coextrusion Instabilities 291
11.3.5 Encapsulation 292
11.3.6 Volatiles 293
11.3.7 Simulation and Modeling 293
11.4 Post-treatment of Bicomponent Fibers 295
11.5 Applications of Bicomponent Fibers 296
11.5.1 Fibers as Bonding Elements in Nonwovens 296
11.5.2 Microfibers 297
11.5.3 Fibers with Special Cross Sections 297
11.5.4 Fibers with High-Performance Core 298
11.5.5 Fibers with Functional Surface 299
11.5.6 Biodegradable Fibers 300
11.5.7 Polymer Optical Fibers 301
11.5.8 Electrically Conductive Fibers 301
11.5.9 Liquid-Core Fibers 302
11.5.10 Fibers for Fully Thermoplastic Fiber-Reinforced Composites 303
11.5.11 Shape Memory Fibers 304
References 304
12 Superabsorbent Fibers 315
Nuray Ucar and Burçak K. Kayao˘glu
12.1 Introduction 315
12.2 Overview of Superabsorbent Fibers 316
12.2.1 History of Superabsorbent Fibers 316
12.2.2 Main Principle of Superabsorbency 316
12.2.3 Polymer Materials 319
12.2.4 Production Methods 319
12.2.4.1 Mixing the Superabsorbent Material with Hydrophobic/Hydrophilic
Material 320
12.2.4.2 Directly Using a Superabsorbent Polymer for Superabsorbent Fiber
Production 322
12.2.5 Test Methods 325
12.3 Application 327
12.4 Future Scope and Challenges Ahead 329
12.5 Summary 330
References 331
13 Elastic Fibers 335
Lu Jing
13.1 Introduction 335
13.1.1 Definition 335
13.1.2 Classification 335
13.2 Structure, Principles, and Characteristics 338
13.2.1 Structure and Principle in Elasticity 338
13.2.2 Structure and Principle in Other Performances 343
13.3 New Development of Elastic Fibers 344
13.3.1 Polyurethane Elastic Fiber 344
13.3.2 Bicomponent Elastic Fiber 350
13.3.3 Polyolefin Elastic Fiber 351
13.3.4 Polyether-Ester Elastic Fiber 352
13.3.5 Polyester Elastic Fiber 353
13.4 Evaluation and Application 353
13.5 Future Trends 356
References 357
14 Smart Fibers 361
DongWang,Weibing Zhong,WenWang, Qing Zhu, andMu Fang Li
14.1 Introduction 361
14.1.1 Definition 361
14.1.2 Research Status 361
14.1.3 Classification 362
14.2 Raw Materials and Preparation 362
14.2.1 Raw Materials 362
14.2.1.1 Metal Related 363
14.2.1.2 Inorganic Nonmetallic and Polymer Related 364
14.2.2 Preparations 365
14.2.2.1 SpinningMethods 365
14.2.2.2 IntelligentizationMethod 366
14.3 Structure and Properties 367
14.3.1 Primary Fiber Structure 368
14.3.1.1 Conventional Fiber Structure 368
14.3.1.2 Skin-Core Structure 369
14.3.2 Multilayered Structure 369
14.3.2.1 Coating with Single Layer 370
14.3.2.2 Coating with No Less Than Double Layers 370
14.3.3 Three-Dimensional Fiber-Based Structures 372
14.3.3.1 Fabrics and Fiber-Based Membrane 372
14.3.3.2 Aerogel 373
14.4 Principles and Theories 373
14.4.1 Shape Memory Fiber 373
14.4.2 Fiber-Based Actuator 374
14.4.3 Luminescence Fiber 375
14.4.4 Color-Changed Fiber 376
14.4.5 Thermoregulated Fiber 377
14.5 Applications 377
14.5.1 Smart Fibers Used in Textiles 377
14.5.1.1 Smart Clothing 377
14.5.1.2 Wearable Electronics 378
14.5.2 Smart Fibers Used in Industrial 378
14.5.2.1 Medical Supplies 378
14.5.2.2 Sensors 380
14.5.2.3 Energy Conversion 381
14.5.3 Other Uses 381
14.6 Future Trends 381
References 383
15 Optical Fibers 391
Hiroaki Ishizawa
15.1 Introduction 391
15.2 Fundamentals of Fiber Optics 392
15.2.1 Fiber Optics Classification 392
15.2.2 Manufacturing Process 392
15.2.3 General Characteristics of Fiber Optics 394
15.3 Optical Fiber Sensor 394
15.3.1 Advantages of Optical Fiber Sensors 394
15.3.2 Principles and Applications of Optical Fiber Sensors 395
15.3.2.1 Temperature Measurement 395
15.3.2.2 Oxygen Concentration Measurement 395
15.3.2.3 Strain Measurement by Brillouin Optical Time Domain Reflectometry
(B-OTDR) and Fiber Bragg Grating Sensors (FBG) 395
15.3.2.4 Biomedical Measurement 397
15.3.3 Principles and Application of the Vital Sign Measurement by FBG
Sensor 398
15.3.3.1 FBG Sensor Interrogator to Measure Human Vital Signs 398
15.3.3.2 PulseWave Measurement 399
15.3.3.3 Pulse Rate Measurement 400
15.3.3.4 Respiratory Rate Measurement 400
15.3.3.5 Blood Pressure Measurement by Pulse Transit Time Detection 401
15.3.3.6 Partial Least Squares Regression Calibration for Blood Pressure
Measurement 402
15.4 Healthcare Monitoring by Using FBG Sensor 404
15.4.1 FBG Sensor Application to Multi-vital Sign Measurement 404
15.4.2 Fabrication of Smart Textiles 405
15.5 Future Trends: As the Summary 406
References 407
16 Memory Fibers 411
Harishkumar Narayana, Jinlian Hu, and Bipin Kumar
16.1 Introduction 411
16.2 Morphology and Molecular Mechanism of Memory Polymers 412
16.2.1 Nature of Transitions in MPs 413
16.3 Evaluation of Shape Memory Properties 413
16.4 Memory Polymers As Fibers (MPFs) 414
16.4.1 Which Fibers Do Have Better Performance,Wet or Melt Spun? 415
16.4.2 Effect of Post-spinning Operations on MP Fiber Properties 417
16.4.2.1 Effect of Thermal Setting or Heat Treatment 417
16.4.2.2 Influence of Drawing Process 420
16.4.3 Other Type of MPU Fibers 421
16.4.3.1 Smart Hollow Fibers 421
16.4.3.2 Electro-responsive Fibers 421
16.4.3.3 Electrospun Fibers 422
16.5 Novel Stress Memory Behavior in MPs 422
16.5.1 What Is Stress Memory? 422
16.5.2 Mechanism of Stress Memory 423
16.5.3 Components of Stress Memory 424
16.6 Stress Memory Behavior in Memory Fibers 425
16.7 Techniques of Characterization for Memory Fibers 428
16.8 Potential Application of Stress Memory Fiber/Filaments 428
16.9 Recent Advances in MP Fibers 430
16.10 Future Trends 430
References 430
17 TextileMechanics: Fibers and Yarns 435
Zubair Khaliq and Adeel Zulifqar
17.1 Introduction 435
17.2 Fiber 436
17.2.1 Fiber Consumption 436
17.3 Strength Contributing Fiber Parameters 438
17.4 Mechanical Properties of Fiber 438
17.4.1 Stress–Strain Curve 438
17.4.2 Elastic Recovery,Work of Rupture, and Resilience 440
17.4.3 Effects of Time, Temperature, and Moisture 440
17.5 Yarn Classification 440
17.6 Yarn Construction 441
17.6.1 Ring-Spun Yarn 442
17.6.2 Yarn Structure 443
17.6.2.1 Carded and Combed Yarns 443
17.6.2.2 Compact Yarn 444
17.6.3 Rotor-Spun Yarn 445
17.6.3.1 Yarn Structure 446
17.6.4 Air Vortex Spun Yarn 446
17.6.4.1 Yarn Structure 446
17.6.5 Frictional Spun Yarn 448
17.6.6 Mechanical Properties of the Yarn 448
17.6.7 Important Parameters of Yarn Tensile Strength 448
17.6.8 Strength–Comfort–Twist Relationship 451
References 454
18 TextileMechanics:Woven Fabrics 455
Adeel Zulifqar, Zubair Khaliq, and Hong Hu
18.1 Introduction 455
18.1.1 Woven Fabric Structures 456
18.1.1.1 RegularWoven Structures (BasicWeaves) 456
18.1.1.2 IrregularWoven Structures 457
18.1.2 Weave Factor 457
18.1.3 The Myth of Crimp 458
18.2 Woven Fabrics Geometrical Models 458
18.3 Woven Fabric Mechanics, Theories, and Methodologies 460
18.3.1 Tensile Deformation ofWoven Fabrics 461
18.3.1.1 Woven Fabric Behavior When Extended in Principal Directions 462
18.3.1.2 Woven Fabric Behavior When Extended in Bias Direction 463
18.3.1.3 Effect of Yarn Crimp and Yarn Friction Coefficient on Fabric
Mechanical Properties 463
18.3.1.4 Anisotropy ofWoven Fabric Tensile Properties 464
18.3.2 Compression Deformation ofWoven Fabrics 465
18.3.3 Shearing Deformation ofWoven Fabrics 468
18.4 MathematicalModeling ofWoven Fabric Constitutive Laws 469
18.4.1 Constitutive Laws ofWoven Fabric 470
18.4.2 ComputationalWoven Fabric Mechanics 471
18.4.2.1 Continuum Models 471
18.4.2.2 DiscontinuumModels 471
18.4.3 Energy Methods forWoven Fabric Mechanics 472
18.5 Conclusion 473
References 474
19 Fabric Making Technologies 477
Tao Hua
19.1 Introduction 477
19.2 Weaving 479
19.2.1 Weaving Machines 479
19.2.2 Woven Structures 481
19.2.3 Properties 484
19.2.4 Applications 484
19.3 Knitting 485
19.3.1 KnittingMachines 485
19.3.2 Knitted Fabric Structures 486
19.3.3 Properties 488
19.3.4 Applications 489
19.4 Nonwovens 490
19.4.1 Manufacture of Nonwovens 490
19.4.2 Properties 492
19.4.3 Applications 493
19.5 Braiding 493
19.5.1 Braiding Processes and Machines 493
19.5.2 Braided Structures and Properties 494
19.5.3 Applications 495
19.6 Future Trends 496
References 496
 
Volume 2
Preface xv
20 Chemical Characterization of Fibrous Materials 499
Chi-wai Kan and Ka-poMaggie Tang
20.1 Introduction 499
20.2 Chemical Finishing of Fibrous Materials for Advanced
Applications 500
20.2.1 Electronic Textiles 500
20.2.1.1 Conductive Fibers 500
20.2.1.2 Conductive Fabrics 500
20.2.1.3 Conductive Inks 500
20.2.2 Medical Textiles 501
20.2.2.1 Add into the Initial Polymer Solution or Chemical Chain Prior to Fiber
Extrusion 503
20.2.2.2 During Textile Finishing 504
20.2.3 Self-Cleaning Textiles 506
20.3 Principles and Methods in Chemical Characterization of Fibrous
Materials 507
20.3.1 Fourier Transform Infrared (FTIR) Spectroscopy 507
20.3.2 X-Ray Diffraction (XRD) 509
20.3.3 X-Ray Photoelectron Spectroscopy (XPS) 511
20.3.4 X-Ray Fluorescence 512
20.3.5 Chromatographic Methods 512
20.3.6 Energy-Dispersive X-Ray Analysis (EDX) 513
20.3.7 Scanning Electron Microscope (SEM) 515
20.3.8 Atomic Force Microscopy (AFM) 515
20.4 Performance, Evaluations, and Applications of Chemical Treatment on
Fibrous Materials 515
20.4.1 Electronic Textiles 515
20.4.1.1 Fashion Statements 515
20.4.1.2 Utility Functions 515
20.4.2 Medical Textiles 518
20.4.3 Self-Cleaning Textiles 519
20.5 Performance Tests 521
20.6 Conclusion 522
Acknowledgment 522
References 522
21 Soft Computing in Fibrous Materials 529
AbhijitMajumdar, Piyali Hatua, andMirela Blaga
21.1 Introduction 529
21.2 Soft Computing Techniques 530
21.2.1 Artificial Neural Network (ANN) 530
21.2.1.1 Back-Propagation Algorithm 532
21.2.1.2 Levenberg–Marquardt Algorithm 533
21.2.1.3 Important Parameters of Artificial Neural Network 534
21.2.2 Fuzzy Logic 535
21.2.2.1 Types of Fuzzy Inference System 538
21.2.3 Genetic Algorithm 539
21.2.4 Hybrid Systems 541
21.2.4.1 Adaptive Network-Based Fuzzy Inference System (ANFIS) 541
21.3 Applications of Soft Computing in Fibrous Materials 544
21.3.1 Applications in Yarn Manufacturing 544
21.3.1.1 Yarn Engineering and Process Optimization 544
21.3.2 Applications in Fabric Property Prediction 545
21.3.2.1 Prediction of Mechanical Properties of Fabrics 546
21.3.2.2 Prediction of Transmission Properties of Fabrics 546
21.3.2.3 Modeling of Fabric UV Protection 547
21.3.2.4 Applications in Nonwoven Fabrics 551
21.4 Conclusions 551
References 552
22 Fiber-Shaped Electronic Devices 557
Yang Zhou, Jian Fang, Yan Zhao, and Tong Lin
22.1 Introduction 557
22.2 Fiber-Shaped Electronic Devices 558
22.2.1 Twisted Fiber Devices (TFDs) 559
22.2.2 Fiber ElectrodeWrapped Fiber Devices (FEWFDs) 560
22.2.3 Sheath–Core Single Fiber Devices (SCSFDs) 561
22.2.4 Parallel Coil Fiber Devices (PCFDs) 561
22.3 Electrode Materials 562
22.3.1 Metals and Metal Oxides 562
22.3.2 Carbon-Based Materials 564
22.3.3 Conducting Polymers 565
22.4 Applications 566
22.4.1 Energy Harvesters 566
22.4.1.1 Thermal Energy Harvesters 566
22.4.1.2 Solar Cells 568
22.4.1.3 Mechanical Energy Harvesters 570
22.4.2 Energy Storage 572
22.4.2.1 Supercapacitors 572
22.4.2.2 Fiber-Shaped Li-Ion Battery 575
22.4.3 Electrochromic Fibers 577
22.4.4 Transistors 580
22.4.5 Fiber-Shaped Electroluminescent Device 581
22.4.6 Fiber-Shaped Sensors 582
22.4.7 Characterization Techniques and Key Parameter 583
22.5 Conclusions 584
References 584
23 Fibers for Optical Textiles 593
Dana Kˇremenáková, JiriMilitky, and RajeshMishra
23.1 Introduction 593
23.2 Principles of Fibers Optics 595
23.3 Materials of POF 604
23.3.1 Core 604
23.3.2 Cladding 608
23.3.3 Jacket 608
23.4 Side-Emitting POF 609
23.4.1 SEPOF Based on Difference Between Refractive Indexes 610
23.4.2 SEPOF Based on Multiple Micro-bending 612
23.4.3 Modifications of POF Structure 616
23.4.4 Local Side Emission 620
23.5 Properties of POF 622
23.5.1 Optical Attenuation 623
23.5.2 Mechanical Properties 627
23.5.3 Thermal Properties 635
23.6 Illumination Systems Using POF 636
23.7 LIHS Applications 642
23.8 Conclusion 643
References 644
24 Fibers as Energy Materials 649
Jiadeng Zhu, Esra Serife Pampal, Yeqian Ge, Jennifer D. Leary, and Xiangwu
Zhang
24.1 Introduction to Fibers as Energy Materials 649
24.2 Fundamental Principles 649
24.2.1 Basic Terms Related to Energy 650
24.2.2 Principles of Lithium-Ion Batteries 650
24.2.3 Principles of Supercapacitors 651
24.3 Characterization, Structure, and Fabrication of Fibrous Energy
Materials 652
24.3.1 Commonly Used Characterization Techniques for Fibrous Energy
Materials 653
24.3.2 Fibrous Structures of Electrodes 653
24.3.2.1 Continuous Fibers 653
24.3.2.2 Carbon Fibers Containing Nanoparticles 653
24.3.2.3 Porous and Tubular Fibers 654
24.3.3 Fibrous Structures of Separators 656
24.3.4 Fabrication Approaches 657
24.4 Applications to Batteries, Supercapacitors, and Energy
Harvesting 659
24.4.1 Batteries 659
24.4.2 Supercapacitors 665
24.4.3 Energy Harvesting Devices 667
24.5 Future Trends 672
References 672
25 Fiber-Based Sensors and Actuators 681
Xiaomeng Fang, Kony Chatterjee, Ashish Kapoor, and Tushar Ghosh
25.1 Introduction 681
25.2 Fibers as Actuators and Sensors 682
25.3 Fundamental Principle and Types of Fiber Actuators 683
25.3.1 Shape Memory Materials 683
25.3.2 Piezoelectric Materials 684
25.3.3 Electrically Conducting Polymers 686
25.3.4 Dielectric Electroactive Polymers 688
25.3.5 Carbon Nanotubes 689
25.3.6 Twisted/Coiled Fibers 694
25.3.7 Other Types 694
25.4 Fundamental Principle and Types of Fiber Sensors 694
25.4.1 Strain and Pressure Sensors 696
25.4.1.1 Piezoresistive Type 696
25.4.1.2 Capacitive Type 699
25.4.1.3 Piezoelectric Type 700
25.4.1.4 Optical Type 704
25.4.2 Humidity and Temperature Sensors 705
25.4.3 Chemical Sensors 705
25.5 Conclusions and Outlook 709
References 710
26 Textile-Based Electronics: Polymer-AssistedMetal Deposition
(PAMD) 721
Casey Yan and Zijian Zheng
26.1 Introduction 721
26.1.1 The Rise of Textile-Based Electronics 721
26.1.2 The Essential: High-Performance Conductive Textiles 722
26.1.3 Fabrication of Metallic Textiles and the Challenges 723
26.1.4 Polymer Brushes Tackle Metal/Textile Interfacial Challenge 724
26.2 Polymer-Assisted Metal Deposition (PAMD) 726
26.2.1 What Are Polymer Brushes? 726
26.2.2 Mechanism of PAMD 728
26.2.3 Brush Selection for ELD 731
26.2.3.1 Cationic Polymer Brushes 731
26.2.3.2 Anionic Polymer Brushes 732
26.2.3.3 Nonionic Polymer Brushes 733
26.2.3.4 Advantages of Using Polymer Brushes as ELD Platform 733
26.2.3.5 Fabrication of Metallic Textiles via PAMD 734
26.3 Strategy to Fabricate Patterned Metallic Traces in PAMD 736
26.3.1 Why Patterning Is Required? 736
26.3.2 CatalyticMoiety Ink Patterning 736
26.3.3 Copolymer Ink Patterning 738
26.4 Applications in Textile-Based Electronics 739
26.4.1 Supercapacitor 739
26.4.2 Triboelectric Nanogenerator 742
26.4.3 Solar Cell 742
26.5 Conclusion, Future Outlook, and Challenges 745
References 746
27 Fibers for Medical Compression 749
Bipin Kumar, Harishkumar Narayana, and Jinlian Hu
27.1 Introduction 749
27.2 Compression Therapy 750
27.2.1 Pathophysiology and Implications of Chronic Venous Disorders 750
27.2.2 Need for External Pressure and Its Physiopathology 752
27.3 Role of Fibers in Compression Therapy 753
27.3.1 Fiber-Based Compression Modalities 753
27.3.2 Compression Requirements 754
27.3.3 Practical Challenges 755
27.4 Theoretical Insights into Pressure Prediction 756
27.5 Fibrous Material and Construction Used in Compression andTheir
Performance 758
27.6 Innovation in Compression Products 762
27.7 Shape Memory Fibers for Compression 765
27.8 Conclusions 768
References 768
28 Electrospun Nanofibers for Environmental Protection:Water
Purification 773
Hongyang Ma, Christian Burger, Benjamin Chu, and Benjamin S. Hsiao
28.1 Introduction 773
28.2 Characters of Electrospun Nanofiber Scaffold 775
28.2.1 Porosity 775
28.2.2 Pore Size 777
28.2.3 Surface Area 778
28.2.4 Pore Geometry 779
28.2.5 Mechanical Properties 781
28.2.6 Materials 782
28.3 Applications of Electrospun Nanofibrous CompositeMembranes 783
28.3.1 As a Barrier Layer 783
28.3.1.1 Size Exclusion 783
28.3.1.2 Adsorption 785
28.3.2 As a Support Layer 788
28.3.2.1 Ultrafiltration 789
28.3.2.2 Nanofiltration and Reverse Osmosis 795
28.3.2.3 Other Applications 797
28.4 Conclusions 799
28.5 Future Prospects 799
Acknowledgments 799
References 800
29 Fibers for Filtration 807
Govindharajan Thilagavathi and Siddhan Periyasamy
29.1 Introduction 807
29.2 Filtration and FilterMedia 808
29.2.1 Types of Filtration 809
29.2.2 FiltrationTheories 809
29.2.3 Requirements of FilterMedia 810
29.3 Fibrous Materials as FilterMedia 811
29.3.1 Classification of Fibers 811
29.3.2 Fine and Morphological Structures of Fibers 811
29.4 Forms of Fibrous Substrates for Filtration 814
29.4.1 Roving and Yarns 814
29.4.2 Interlaced Fabrics 815
29.4.3 Nonwovens 816
29.4.4 Interloped Fabrics 816
29.4.5 Fibrous Membranes 817
29.5 Fibers in Filtration Applications 817
29.6 Factors Governing the Performance of Fibrous FilterMedia 823
29.6.1 Role of Cross Section of the Fiber 823
29.6.2 Role of Pore Size 825
29.7 Characterization of FilterMedia 826
29.8 Future Prospects 827
References 828
30 Fibrous Materials for Thermal Protection 831
Gouwen Song and Yun Su
30.1 Introduction 831
30.2 Performance Requirements of Thermal Protective Clothing 832
30.3 Fibrous Materials Suitable for Thermal Protection 833
30.3.1 Chemically Modified Flame Retardant Fibers 835
30.3.2 Inherently Flame Retardant Fibers 836
30.4 Performance Standards and Evaluation Method Development 839
30.4.1 Flammability Test 839
30.4.2 Thermal Protective Performance Evaluation 841
30.4.2.1 Benchtop Testing 842
30.4.2.2 Full-Scaled Manikin Testing 845
30.5 Influencing Factors of Thermal Protective Performance 847
30.5.1 Effect of Fabric Basic Properties 847
30.5.2 Effect of Air Gap Size 848
30.5.3 Effect of Moisture Content 849
30.6 Future Trends 849
References 850
31 Comfort Management of Fibrous Materials 857
Chengjiao Zhang and FamingWang
31.1 Introduction 857
31.2 Human Thermal Regulation and Heat Transfer Mechanisms 857
31.3 Clothing Comfort 860
31.4 Heat and Moisture Transfer Through Textiles 861
31.4.1 Heat TransferThrough Textiles 861
31.4.2 Moisture TransferThrough Textiles 862
31.5 Assessment of Materials and Clothing 863
31.5.1 Material and Fabric Testing 864
31.5.2 Full-Scale Clothing Testing 866
31.5.3 ClothingThermal Insulation 866
31.5.4 Clothing Vapor Resistance 868
31.5.5 Human Trials 870
31.5.6 Fiber andThermal Comfort 871
31.6 Fabric and Thermal Comfort 872
31.7 Personal Conditioning Clothing for ImprovingWear Comfort 874
31.7.1 Personal Cooling Clothing System 874
31.7.2 Personal Heating Clothing System 876
31.7.3 Smart Heating Sleeping Bag 877
31.8 Conclusions 879
References 879
32 Fibers for Radiation Protection 889
BorisMahltig
32.1 Introduction 889
32.2 Structures and Properties of Fibers for Radiation Protection 892
32.3 Functions, Performance, Evaluations, and Applications 906
32.3.1 Radiowave/Microwave Shielding 906
32.3.2 IR Shielding/Heat Management 910
32.3.3 UV and IR Protection 912
32.3.4 X-Ray Shielding 914
32.4 Future Trends 918
Acknowledgments 918
References 919
33 Fibrous Materials for Antimicrobial Applications 927
Yue Deng, Yang Si, and Gang Sun
33.1 Introduction 927
33.1.1 Basic Principles 927
33.1.2 Brief History 927
33.2 Quaternary Ammonium Compound Modified Fabrics 928
33.2.1 AntimicrobialMechanism of QACs 929
33.2.2 Environmental Impact 929
33.2.3 Conclusions 930
33.3 N-Halamine Modified Fabrics 930
33.3.1 Basic Principles 931
33.3.2 Modification Method 931
33.3.2.1 Cross-linking 931
33.3.2.2 Grafting 932
33.3.2.3 Coating 932
33.3.2.4 Reactive Reagent Treating 932
33.3.2.5 Electrospinning 933
33.3.3 Conclusions and Future Trend 933
33.4 Metals and Metal Oxide Modified Fabrics 933
33.4.1 Silver 934
33.4.2 Oligodynamic Effects of Metals 934
33.4.3 Titanium Dioxide 934
33.4.4 Conclusions and Future Trend 935
33.5 Photoactive Chemical Modified Fabrics 935
33.5.1 LAAAs and Photoinduced Biocidal Effect 935
33.5.2 Textile Modification with TiO2 936
33.5.3 Organic Photoactive Reagents 936
33.5.4 Conclusions and Future Trend 937
33.6 Natural Antimicrobial Polymers 938
33.6.1 Hyaluronic Acid 938
33.6.2 Gelatin 939
33.6.3 Alginate 939
33.6.4 Chitosan 940
33.6.5 Conclusions and Future Trend 941
33.7 Conclusions 941
References 942
34 Fibers for Auxetic Applications 953
Hong Hu and Adeel Zulifqar
34.1 Introduction 953
34.2 Auxetic Structures and Geometries 954
34.2.1 Auxetic Geometries 955
34.2.1.1 Re-entrant Geometries 955
34.2.1.2 Rotating Rigid Geometry 955
34.2.1.3 Nodule and Fibril-Based Structure 956
34.2.1.4 Chiral-Based Auxetic Geometries 956
34.2.1.5 Foldable Geometries 957
34.3 Auxetic Polymeric Fibers and Materials 958
34.3.1 Liquid Crystalline Polymers and Auxetic Monofilaments 958
34.3.2 Auxetic Polymeric Fibers 960
34.3.3 Auxetic Polypropylene Fibers 960
34.3.3.1 Large-Scale Production of Auxetic PP Fibers 960
34.3.3.2 Testing of Auxetic Behavior of PP Fibers 962
34.3.4 Auxetic Polyethylene 963
34.3.5 Auxetic Polyester Fibers 964
34.3.6 Auxetic Polyamide Fibers 965
34.3.7 Moisture-Sensitive Auxetic Fibers 966
34.4 Properties and Applications of Auxetic Fibers 967
34.5 Conclusions 968
References 969
Index 973
 
It is US$10. To get this book send email: textileebooks@gmail.com

Share This

Related Posts

Previous
Next Post »