Statistics for Business and Economics: Compendium of Essential Formulas, Third Edition by Franz W. Peren

By

Statistics for Business and Economics: Compendium of Essential Formulas, Third Edition

Franz W. Peren

Statistics for Business and Economics

Contents

About the Author XV

List of Abbreviations XVII

1 Statistical Signs and Symbols 1

2 Descriptive Statistics 3

2.1 Empirical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Cumulative Frequencies . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Mean Values and Measures of Dispersion . . . . . . . . . . . . 6

2.2.1 Mean Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Ratios and Index Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Index Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Peren-Clement Index (PCI) . . . . . . . . . . . . . . . . . . . . 38

2.4 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . 51

2.5.1.1 Confidence Intervals for the Regression

Coefficients of a Simple Linear Regression

Function . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1.2 Student’s t-Tests for the Regression Coefficients

of a Simple Linear Regression

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.2 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . 62

2.5.2.1 Confidence Intervals for the Regression

Coefficients of a Multiple Linear Regression

Function . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.2.2 Student’s t-Tests for the Regression Coefficients

of a Multiple Linear Regression

Function . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.3 Double Linear Regression . . . . . . . . . . . . . . . . . . . . 66

2.5.3.1 Confidence Intervals for the Regression

Coefficients of a Double Linear Regression

Function . . . . . . . . . . . . . . . . . . . . . . . . 69

2.5.3.2 Student’s t-Tests for the Regression Coefficients

of a Double Linear Regression

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5.4 Dummy Variables in Regression Analysis . . . . . . . 76

2.5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5.4.2.1 Derivation of the Simple and

Multiple Regression Function . . 76

2.5.4.2.2 Estimation of the Regression

Parameters according to the

Least Squares Method . . . . . . . 77

2.5.4.2.3 Integration of Categorial Influences

via Dummy Variables . . . 79

2.5.4.3 Quality Measures . . . . . . . . . . . . . . . . . . . . . 82

2.5.4.3.1 Goodness of Fit (Global Quality

Criteria) . . . . . . . . . . . . . . . . . . 82

2.5.4.3.2 Quality Criteria of the Regression

Coefficients . . . . . . . . . . . . . 85

2.5.4.3.3 Checking the Model Assumptions. . . . . . . . . . . . . . . . . . . . . . . 87

2.5.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.5.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3 Inferential Statistics 99

3.1 Probability Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.1.1 Fundamental Terms/Definitions . . . . . . . . . . . . . . . . 99

3.1.2 Theorems of Probability Theory. . . . . . . . . . . . . . . . 104

3.2 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2.1 Concept of Random Variables . . . . . . . . . . . . . . . . . 110

3.2.2 Probability, Distribution and Density Function . . . . 111

3.2.2.1 Discrete Random Variables . . . . . . . . . . . . 111

3.2.2.2 Continuous Random Variables . . . . . . . . . 113

3.2.3 Parameters for Probability Distributions . . . . . . . . . 116

3.3 Theoretical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.3.1 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.3.2 Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . 128

3.4 Statistical Estimation Methods (Confidence Intervals) . . 148

3.4.1 Confidence Interval for the Arithmetic Mean of

the Population μ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.4.2 Confidence Interval for the Variance of the

Population σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.4.3 Confidence Interval for the Share Value in the

Population θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.4.4 Confidence Interval for the Difference of the Mean

Values of Two Populations μ1 and μ2 . . . . . . . . . . . 156

3.4.5 Conficence Interval for the Difference of the Share

Values of Two Populations θ1 and θ2 . . . . . . . . . . . . 160

3.5 Determination of the Required Sample Size . . . . . . . . . . . 163

3.5.1 Determination of the Required Sample Size for

an Estimation of the Arithmetic Mean μ . . . . . . . . . 163

3.5.2 Determination of the Required Sample Size for

an Estimation of the Share Value θ . . . . . . . . . . . . . 165

3.6 Statistical Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.6.1 Parameter Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.6.1.1 Arithmetic Mean with Known Variance

of the Population | One Sample Test . . . . . 167

3.6.1.2 Arithmetic Mean with Unknown Variance

of the

Population | One Sample Test . . . . . . . . . . 170

3.6.1.3 Share Value | One Sample Test . . . . . . . . . 172

3.6.1.4 Variance | One Sample Test . . . . . . . . . . . . 174

3.6.1.5 Difference of Two Arithmetic Means with

Known Variances of the Population | Two

Samples Test . . . . . . . . . . . . . . . . . . . . . . . . 177

3.6.1.6 Difference of Two Arithmetic Means with

Unknown Variances of the Populations

under the Assumption that their Variances

are Unequal | Two Samples Test . . 179

3.6.1.7 Difference of Two Arithmetic Means with

Unknown Variances of the Populations

under the Assumption that their Variances

are Equal | Two Samples Test . . . . 182

3.6.1.8 Difference of Two Share Values | Two

Samples Test . . . . . . . . . . . . . . . . . . . . . . . . 185

3.6.1.9 Quotients of Two Variances | Two Samples

Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

3.6.2 Distribution Tests (Chi-Squared Tests) . . . . . . . . . . 191

3.6.2.1 Chi-Squared Goodness of Fit Test . . . . . . 191

3.6.2.1.1 Chi-Squared Goodness of Fit

Test for a Discrete Distribution

of the Population . . . . . . . . . . . . . 191

3.6.2.1.2 Chi-Squared Goodness of Fit

Test for a Continous Distribution

of the Population . . . . . . . . . 197

3.6.2.2 Chi-Squared Independence Test . . . . . . . . 201

3.6.2.3 Chi-Squared Homogeneity Test . . . . . . . . . 207

3.6.3 Yates’s Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4 Probability Calculation 215

4.1 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

4.2 Definitions of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

4.2.1 The Classical Definition of Probabilty . . . . . . . . . . . 216

4.2.2 The Statistical Definition of Probability . . . . . . . . . . 217

4.2.3 The Subjective Definition of Probability . . . . . . . . . 218

4.2.4 Axioms of Probability Calculation . . . . . . . . . . . . . . 218

4.3 Theorems of Probability Calculation . . . . . . . . . . . . . . . . . 220

4.3.1 Theorem of Complementary Events . . . . . . . . . . . . 220

4.3.2 The Multiplication Theorem with Independence

of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.3.3 The Addition Theorem . . . . . . . . . . . . . . . . . . . . . . . . 221

4.3.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . 223

4.3.5 Stochastic Independence . . . . . . . . . . . . . . . . . . . . . 224

4.3.6 The Multiplication Theorem in General Form . . . . 225

4.3.7 The Theorem of Total Probability . . . . . . . . . . . . . . . 225

4.3.8 Bayes’ Theorem (Bayes’ Rule) . . . . . . . . . . . . . . . . . 227

4.3.9 Overview of the Probability Calculation of Mutually

Exclusive and Non-Exclusive Events . . . . . . . . 230

4.4 Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.4.1 The Concept of Random Variables . . . . . . . . . . . . . 231

4.4.2 The Probability Function of Discrete Random

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.4.3 The Distribution Function of Discrete Random

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4.4.4 Probability Density and Distribution Function of

Continuous Random Variables . . . . . . . . . . . . . . . . . 234

4.4.5 Expected Value and Variance of Random Variables 239

A Statistical Tables 243

B Case Study: Regression Analysis Using Dummy

Variables in R 321

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

B.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

B.3 Conducting the Regression Analysis . . . . . . . . . . . . . . . . . 325

B.3.1 Single Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

B.3.2 Multiple Regression with Dummy Variables . . . . . . 327

C Bibliography 331

Index 341

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.